InfoQ Homepage Machine Learning Content on InfoQ
-
State of the Art in Automated Machine Learning
InfoQ caught up with experts Francesca Lazzeri, machine learning scientist lead at Microsoft; Matthew Tovbin, co-founder of Faros AI; Adrian de Wynter, applied scientist in Alexa AI’s Secure AI Foundations; Leah McGuire, principal member of technical staff at Salesforce; and Marios Michailidis, data scientist at H2O.ai, about the state of the art in automated machine learning (AutoML).
-
How to Get Hired as a Machine Learning Engineer
To become a machine learning engineer, you have to interview. You have to gain relevant skills from books, courses, conferences, and projects. Include technologies, frameworks, and projects on your CV. In an interview, expect that you will be asked technical questions, insight questions, and programming questions. When given a technical task, demonstrate your skills as if you already had the job.
-
Innovation Startups Modeling Agile Culture
Innovation is not only about the most advanced technology; management and processes are the new era of startups' innovation. To mix the power of the data and the importance of people to offer business intelligence is a key point nowadays. The result is not only the most important thing; the way you do it is more important. To be agile is to adapt to today's market.
-
TornadoVM: Accelerating Java with GPUs and FPGAs
The proliferation of heterogeneous hardware represents a problem for programming languages such as Java that target CPUs. TornadoVM extends the Graal JIT compiler to take advantage of GPUs & FPGAs and provides a flexible, high-level model whilst still enabling high performance and features such as live task migration.
-
Machine Learning in Java with Amazon Deep Java Library
In this article, we demonstrate how Java developers can use the JSR-381 VisRec API to implement image classification or object detection with DJL’s pre-trained models in less than 10 lines of code.
-
Q&A on the Book Hands-On Genetic Algorithms with Python
Hands-On Genetic Algorithms with Python by Eyal Wirsansky is a new book which explores the world of genetic algorithms to solve search, optimization, and AI-related tasks, and improve machine learning models. InfoQ interviewed Eyal Wirsansky about how genetic algorithms work and what they can be used for.
-
The Road to Artificial Intelligence: a Tale of Two Advertising Approaches
Artificial Intelligence startups received a record $26.6bn in funding last year, yet a litany of stakeholders continue to demonstrate a lack understanding and education around the discipline. It is critical that entrepreneurs, investors, regulators, and consumers all remain vigilant in properly assessing advertising claims as relates to powerful, constantly-evolving technology.
-
Reinforcement Machine Learning for Effective Clinical Trials
In this article, author Dattaraj Jagdish Rao explores the reinforcement machine learning technique called Multi-armed Bandits and discusses how it can be applied to areas like website design and clinical trials.
-
Q&A on the Book AI Crash Course
The book AI Crash Course by Hadelin de Ponteves contains a toolkit of four different AI models: Thompson Sampling, Q-Learning, Deep Q-Learning and Deep Convolutional Q-learning. It teaches the theory of these AI models and provides coding examples for solving industry cases based on these models.
-
Q&A on the Book Agile Machine Learning
The book Agile Machine Learning by Eric Carter and Matthew Hurst describes how the guiding principles of the Agile Manifesto have been used by machine learning teams in data projects. It explores how to apply agile practices for dealing with the unknowns of data and inferencing systems, using metrics as the customer.
-
Why Visual AI Beats Pixel and DOM Diffs for Web App Testing
Visual AI breaks regions of pixels into rendered elements for comparison purposes, similar to how humans view web pages. As a result, Visual AI can compare any kinds of images on a page, providing a more effective mechanism for automated visual testing when compared to pixel and DOM diffing.
-
Getting to Know Deep Java Library (DJL)
Amazon has announced DJL, an open source library to develop Deep Learning models in Java. This article details how to get started with the toolkit. The library aims to reduce number of software dependencies by enabling end-end Deep learning development in Java, rather than having to use additional technologies such as Python or R.