InfoQ Homepage Artificial Intelligence Content on InfoQ
-
Article Contest: Write an Article for InfoQ and Win a QCon or Dev Summit Ticket
InfoQ encourages software practitioners and domain experts to submit full-length technical educational articles.
-
InfoQ Software Architecture and Design Trends Report - April 2024
The InfoQ Trends Reports offer InfoQ readers a comprehensive overview of key topics worthy of attention. The reports also guide the InfoQ editorial team towards cutting-edge technologies in our reporting. In conjunction with the report and trends graph, our accompanying podcast features insightful discussions among the editors digging deeper into some of the trends.
-
Adding a Natural Language Interface to Your Application
In this article, author Ashley Davis discusses how to add a natural language interface to a chatbot application using OpenAI REST API. He also shows how to extend the chatbot by adding voice commands using MediaRecorder API and OpenAI's speech transcription API.
-
Testing Machine Learning: Insight and Experience from Using Simulators to Test Trained Functionality
When testing machine learning systems, we must apply existing test processes and methods differently. Machine Learning applications consist of a few lines of code, with complex networks of weighted data points that form the implementation. The data used in training is where the functionality is ultimately defined, and that is where you will find your issues and bugs.
-
Generative AI: Shaping a New Future for Fraud Prevention
This article explores how generative AI affects fraud detection by reducing false positives and dynamically adapting to changing fraud patterns. This combination offers a potent preventive solution when integrated with machine learning. The efficacy and scalability of fraud prevention initiatives are enhanced by this innovative approach.
-
Generative AI and Organizational Resilience
Generative AI will profoundly transform communication and information sharing over the next decade, but the change will be uneven across industries and roles. Organizations should empower workers to use AI augmentation thoughtfully, while building literacy on capabilities and limits. A balanced, conscientious integration, using iterations and customer feedback, will produce the best outcomes.
-
Maximizing the Utility of Large Language Models (LLMs) through Prompting
In this article, authors Numa Dhamani and Maggie Engler discuss how prompt engineering techniques can help use the large language models (LLMs) more effectively to achieve better results. Prompting techniques discussed include few-shot, chain-of-thought, self-consistency, and tree-of-thoughts prompting.
-
InfoQ AI, ML, and Data Engineering Trends Report - September 2023
In this annual report, the InfoQ editors discuss the current state of AI, ML, and data engineering and what emerging trends you as a software engineer, architect, or data scientist should watch. We curate our discussions into a technology adoption curve with supporting commentary to help you understand how things are evolving.
-
Reducing Verification Lead Time by 50% by Lowering Defect Slippage and Applying AI/ML Techniques
Can we increase our flexibility? Can we increase our test coverage? Can we increase our efficiency? And is it possible to reduce our verification lead-time by 50%? One company challenged itself with these questions. This article explores two important “‘pillars”’ of their testing strategy: shifting left and using state-of-the-art techniques to support verification activities.
-
AI-Based Prose Programming for Subject Matter Experts: Will This Work?
In this article, author Markus Völter discusses the future of programming using Large Language Model (LLM) tools like ChatGPT and GitHub’s Copilot for prose-to-code generation. He also talks about what new approaches and language changes need to be in place to help non-programmers take advantage of the "program in prose" techniques.
-
Creating Your Own AI Co-Author Using C++
While using ChatGPT through a web interface is one thing, creating your own autonomous AI tool that interfaces with ChatGPT via its API is a different story altogether. As strong proponents of C++, in this article we are going to present a GPT tool written in C++ to ease the pain of dealing with the daunting task of editing endless editorial comments.
-
Minimising the Impact of Machine Learning on our Climate
This article introduces the field of green software engineering, showing the Green Software Foundation’s Software Carbon Intensity Specification, which is used to estimate the carbon footprint of software, and discusses ideas on how to make machine learning greener. It aims to give you the tools to take an active part in the climate solution.