InfoQ Homepage Big Data Content on InfoQ
-
Data Movement at Very Large Scale
In this solutions track talk, sponsored by Solace Systems, Aaron Lee discusses the challenges moving information and techniques that can increase efficiency of data flows within big data architectures
-
The World after Cloud Computing & Big Data
Gunter Dueck wonders how are we preparing for the new society marked by cloud computing and big data in which jobs are automated and mediocre abilities are no longer accepted?
-
A Research Agenda and Vision for Big Data at NASA
Chris Mattmann covers snow hydrology, regional climate modeling, climate science, and intelligence activities that need advancement to deal with the data deluge across NASA and government agencies.
-
Next Gen Hadoop
Akmal B. Chaudhri introduces Apache™ Hadoop® 2.0 and Yet Another Resource Negotiator (YARN).
-
What Can Hadoop Do for You?
Eva Andreasson presents typical categories of problems that are commonly solved using Hadoop and also some concrete examples in each category.
-
Design Patterns for Large-Scale Real-Time Learning
Sean Owen provides examples of operational analytics projects, presenting a reference architecture and algorithm design choices for a successful implementation based on his experience Oryx/Cloudera.
-
Excel Coding Errors Are Destroying World Economies and F# (with Tsunami) Is Here to Stop Them!
Matthew Moloney discusses using F# and .NET inside Excel, demonstrating doing big data, cloud computing, using GPGPU and compiling F# Excel UDFs.
-
Scaling Pinterest
Details on Pinterest's architeture, its systems -Pinball, Frontdoor-, and stack - MongoDB, Cassandra, Memcache, Redis, Flume, Kafka, EMR, Qubole, Redshift, Python, Java, Go, Nutcracker, Puppet, etc.
-
R for Big Data
Indrajit Roy presents HP Labs’ attempts at scaling R to efficiently perform distributed machine learning and graph processing on industrial-scale data sets.
-
REEF: Retainable Evaluator Execution Framework
Rusty Sears introduces REEF along with examples of computational frameworks, including interactive sessions, iterative graph processing, bulk synchronous computations, Hive queries, and MapReduce.
-
Deploying Machine Learning and Data Science at Scale
Nick Kolegraff discusses common problems and architecture to support all the phases of data science and how to start a data science initiative, sharing lessons from Accenture, Best Buy, and Rackspace.
-
Big Data Platform as a Service at Netflix
Jeff Magnusson details some of Netflix' key services: Franklin, Sting and Lipstick.