InfoQ ホームページ differential-privacy に関するすべてのコンテンツ
ニュース
RSSフィード-
PipelineDPによりGoogleの差分プライバシーライブラリをPythonで提供
GoogleとOpenMinedは新たなオープンソースライブラリのPipelineDPをリリースした。これにより、研究者や開発者がバッチ処理システムを使って大規模なデータセットに差分プライベート集計を適用できるようになる。
-
Facebookは機械学習プライバシーライブラリのOpacusをオープンソース化
Facebook AI Research(FAIR)はOpacusのリリースを発表した。OpacusはPyTorchフレームワークを使用して深層学習モデルをトレーニングするときに差分プライバシー技術を適用する高速ライブラリである。Opacusは、他のプライバシーライブラリと比較して桁違いの高速化を実現できる。
-
機微データを保護するための新しい機械学習ライブラリ、TensorFlow Privacyの紹介
最近のブログ記事で、TensorFlowはTensorFlow Privacyを発表した。これは、研究者や開発者が強力なプライバシーを持つ機械学習モデルを構築できるようにするオープンソースライブラリである。このライブラリによって、強力な数学的保証に基づいて、トレーニングプロセスでユーザデータが記憶されないよう保証される。